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“Theoretical” microfluidics and more...

Course topics

Part I: 7. Lehnert (EPFL-LMIS2)

Introduction
Governing equations and flow solutions
Microfluidic channels and circuits

Diffusion and mixing in microscale

M e

Capillary effects and microdroplets

Course topics

Part II: Prof. M.A.M. Gijs (EPFL-LMIS2)

1. Electrohydrodynamics

Debye-layer, electro-osmotic flow, (di-)electrophoresis
2. Magnetophoresis
3. Nanofluidics
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Part I (T. Lehnert)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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1. INTRODUCTION

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Nature is based on powerful microfluidic systems

Water transport system in vascular plants

Tallest known tree on earth: “Hyperion” 115.7 m !
Redwood (sequoia sempervirens)

The height seems to be limited by increasing water
transport constrains, eventually slowing height
growth by reducing photosynthetic carbon gain.

¥
Pyt

[m] 75 8 95 105 112

2 35

Variation in leaf structure with height in redwood.

G.W. Koch et al., “The limits to tree height”
Nature, Vol 428, p. 851-853 (2004)

A large oak tree transpires > 400 L/day

[en.wikipedia.org/wiki/Transpiration]

= Microfluidics ?
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Transport of water occurs through tube-like vessels

(D ~10-100 um, Xylem, fuhov - wood). EPFL
Evaporation through leaf pores (& < 10 um) is one of the ’” ‘H' 1 ¥
major driving forces for pulling up through the tree trunk.
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Leaf pore
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bio1151.nicerweb.com/Locked/media/ch35/

F. Meinzera et al., “Water transport in trees: current
perspectives, new insights and some controversies”, Env.
and Exp. Botany 45 (2001) 239-262

“Trees talk to each other”: The whole forest is actually a “microfluidic system”
forming an underground communication network of roots and fungal mycelium.

Younger tree

Hub tree

@
Q- Fungal network
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The human cardiovascular system

V =~ 5L, flow rate at rest = 5L/min.

Networks of blood (and lymphatic) capillaries
(@ = 5-10 um) span over the lung and other
organs (exchange of water, 0,/CO,, nutrients,
chemical waste).

Total length ~100000 km (!) (80% capillaries).

Capillary beds
of lungs where
gas exchange

occurs

Pulmonary veins

Pulmonary arteries )
Aorta and branches

Venae cavae

Right atrium

Heart/

Right ventricle Sféiém’ic

B Oxygen-rich, \} 77/ Capillary beds of all
CO;-poor blood &7/ body tissues where

Bl Oxygen-poor, v gas exchange occurs
CO;-rich blood ¢ e

010 Pearson Education, Inc.

“Microfluidics”

Red blood cell in a blood capillary

Capillary beds
of lungs where
gas exchange

occurs

Pulmonary
Circuit

Pulmonary veins

Pulmonary arteries
Aorta and branches

Venae cavae

Right atrium |
) . gar‘;,f
Right ventricle systeric
Cirsuit I

[l Oxygen-rich,
CO,-poor blood

B Oxygen-poor, \
CO,-rich blood 9%

| ‘
- Sapillaey bieds ofall large  Small Arterioles Venules Veins

body tissues where \ | arteries arteties Capillaries
gas exchange occurs \
40 cm/s

S T

010 Pearson Education, Inc. I
\ I I
en.wikipedia.org/wiki/Hemodynamics | l\




Microfluidic technologies (Lab-on-a-Chip)

Platforms for bioengineering, bio-chemical assays, bio-analytical applications, etc.

s
[

Automated electrophoresis
of DNA, RNA, and protein
samples (e.g. Agilent 2100

Bioanalyzer, Caliper 1999 =)

Separated DNA

il

Metered sample Laser detection

www.youtube.com/watch?v=wPLzI4bEVc4

Point-of-care testing

to perform diagnostic
2 tests without no . . .
Many review article are available !
laboratory support
v @ (e.g. immunoassays, P. Abgrall and A-M Gué, Lab-on-chip technologies: making a

microfluidic network and coupling it into a complete

e nucleic aci
ucleic acid assays...) microsystem—a review, J. Micromech. Microeng. 17 R15, 2007.

N. Azizipour et al., Evolution of Biochip Technology: A Review from
Lab-on-a-Chip to Organ-on-a-Chip, Micromachines, 11, 599, 2020.

http://htwins.net/scale2/

Microfluidic and nanofluidic systems
— 1mm
Cells on-chips g
[r— Yeast cell division 2
| 100 pm
u ¢
Proteins/DNA chips
] 1 | 10pm
1pm
100 nm
| 10nm
Typical parameter range for microfluidic chips . .
SpIeatp ge f A P ... Nanofluidics
- Channel width < 100 pm / height ~ 1-10 pm T R 1
S nm
- Flow rates from nL/s to pL/s e % z
- Flow velocity pm/s to mm/s (up to m/s) nm B §
- Volumes pL to pL (e.g. droplets) Nanopores . om
DNA & ~2 nm

- Materials: Polymers and glass

Silicon atoms
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Macrofluidics - Microfluidics: What makes the difference ? =PrL

Flow patterns and solid body/liquid interactions

Niagara falls: Average flow rate 2000 m?/s

Jumping humpback whale
L =15 m, speed 20-50 km/h. Large fins

Can it jump out ?

laminar flow —
Swimming protozoa
500 pm L ~ 100 pm, speed < 100 um/s - Flagella, cilia
Macrofluidics - Microfluidics: What makes the difference ? =PrL

= On the microscale our intuition may fail !

Small bouncing water droplet falling onto a super-
hydrophobic surface.

http://www.youtube.com/watch?v=riXp_Q-fDv8

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)

9/106




Macrofluidics - Microfluidics: What makes the difference ? =PrL

Size matters: Effects of downscaling are important !

surface force N I*
volume force e 1-0

= Volume forces (inertial forces and
gravity) become negligible. Viscous
forces dominate. o

= Interfacial/capillary forces determine the
liguid shape and driving forces.
Techniques exploiting boundary effects
can be effective in microfluidic systems
(e.g. electrokinetic effects).

b

Small raindrop
& ~mm, V=50 uL

= Dimensionless numbers may be defined
to evaluate the relative importance of
competing forces.

=PrL

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)
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Reminder: Some basic mathematical notations

e Positionvector r=r,e, tir, e, tr, e, =re,+ye, +ze, (1.9)

e Einstein summation convention or index notation: Repeated index implies summation
over that index.

v= E v; €; = v; e; vector (e.g. flow velocity) (1.10)
i=T,1,%
Veu = vu scalar or dot product (111)

e Differential operators (containing partial spatial derivatives)

V=ed, +e,d, +e0, =e0, (Nabla operator) (1.17)
w2 2 _ 4 Laplace operator
A = V = \_' = d‘.‘,'{)é ( P P ) (1.18)
e The gradient of a scalar field is a vector field Vp =eop+edp+e0p=eop

e The divergence of a vector field is a scalar field Vv =0,v, +9v, +0,v, = O,

e The gradient of a vector field is a dyadic product of two vectors (matrix) Vv= oV,

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=PrL
e Derivatives of a function F(r(t),t)
. L o OF oo OF
- Partial derivatives a,F = e and J,F = Bt (115)
. R dF ) 6
- Total time derivative diF = — =0,F + (8,r,)0,F = 0,F + v,0,F. (116)
d,F(x(t),t) = 0,F + (v- V)F (119)

e Gauss theorem
The volume integral over the divergence V-V(r) of a vector field V(r) in a
region Q is equal to the surface integral over 0Q2 of (n-V da), i.e. the flux of
the quantity V(r) through a surface area da with the normal vector n.

/ dr V.-V = dan-V or / drd,V, = / dan;V; (2.1)
Ja Joa Jo Joa

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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2. Governing equations and
flow solutions

2.1 Flow kinematics and shear stress

2.2 Continuity equation in fluid dynamics
2.3 Navier-Stokes equations

2.4 Simple flow solutions

2.5  Reynolds number and Stokes flow

2.6  Hydrodynamic focusing (Examples)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

2.1 Flow kinematics and shear stress =PrL

forces — ][

* Fluid: Deforms continuously at a measurable rate:
strain rate e

¢ Force gradients or non-uniform stress (force per
unit area) change the shape of “fluidic elements”.

e Velocity gradients Vv are important.

¢ Viscous stress dominates in microfluidic systems !

Microfluidic laminar flow patterns
with bubbles

Continuum description: Fields of macroscopic
parameters. Partial differential equations
define local properties of a system.

Example: Flow around a wing
v(r,t) field (arrows) — Vector field: direction and length

p(r,t) field (colors) — Scalar field: “value”, no direction
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2.1 Flow kinematics and shear stress

3D velocity (vector) field Velocity gradient tensor
v(r,t) = v(v,v,v,t) = u(rt) = u(u,v,w,t) (9 components)

i + ti . .
(3 spatial components) (+ time) General case including all

possible velocity field gradients
of a velocity field u(u,v,w).

~du  du  Ou
ax dy 9z

- B gy B
Vu=| 5% dy 0z
Bw dw dw
| dx ay 0z

Streamlines around cylindrical obstacles.

Vu is a dyadic product of the two vectors V
and u (rank-2 tensor, not the dot product !)

here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : transport in microfluidic devices

=PrL
= Translation: without deformation (no velocity gradients)
= Extension/Shear deformation: Symmetric strain rate tensor ¢
(6 components)
1 ) E;hmr§?m ;
i S L A A\ -4
The strain rate g; [s7] |s- a sy e 2y
measure for the velocity S AN
1 1 1 S“T&N T Ay io—y’ y\{<
gradient Vu at a given point N
(r,t) of the fluidic system. Example: Strain rate &, =8y/&t =y,
for v =v,(y) in x-direction.
du 1 f du du 1 I i
 Tew ey e v HBR) 13+
E=len oy o= J(B4R) B p(men
E2x Ec‘_l' €z; 1 'Ul; dw 1 { av . A dw J
P+ d(k+2)

= Vorticity: Fluidic elements may also rotate (not considered here)

here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : Transport in microfluidic devices
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e Examples: Strain of a fluidic element in specific flow fields

I —

pure extensional strain
(diagonal elements of &)

2 =0 for incompressible fluids !

pure shear strain
(symmetric off-diagonal elements of €)

2D flow fields u(u,v)

u=x,v=-y
./.f'j’- b NN
Ay i i LT
v . B 0
i Ty 8ext = 0 -1
B S ik
'\.'\"\'.l Il|r - -
NN A rds r
NN i I
du 1 #m_+ah
=4 dx 2\ dy iax
E = : .
i(u g dv dv
2\ 3y ax ay
u=y,v=X .
1 S
;\\"-. - . Y
L L
N Y
phose RN
Py i
fdee | o €. = 0 1
FIF A ' ' shear —
}‘,-,:/ ‘ .\.:!T 1 0
AN
. PN ML N
a o F

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Sir Isaac Newton

Portrait of saac Mewton in 1689 (age 46) by
Godirey Kneller

Born 25 December 1642
[MS: 4 January 18231
Woolsthorpe, Lincolnshire,
England
Died 20 March 172&/7 (aged 84)
[OS: 20 March 1728
NS: 31 Marsh 17271 1]
Kensington, Middlesex,
England, Great Britain
Resting W i A ;
place Westminster Abbey
Residence  England
Nationality  English gster Briish)
Fields Physics - Matural philosophy

Mathematics - Astronomy
Alchemy - Christian thealogy
Econamics

=PrL

= The strain rate tensor € is related to the stress tensor ¢

— E__'L-'.T E }:_P EJ‘IZ
€Exx Ez €y |\J Euch:Hg Lansd

O€ J\Scos\TY

1 (T) [Pa-s] is the dynamic viscosity

n = constant (for T = const) = Newtonian fluids

n — 1 (Vu) ® Non-Newtonian fluids

In  microfluidics the viscous flow regime s
predominate, thus the viscous stress tensor is of

fundamental importance!

o= 17 inthe following sections and in literature !
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Non-Newtonian fluids 7 — 77 (Vu) cPrL

e.g. fluids containing long polymers or colloidal systems (e.g. blood).

n increases with du/dy
G [N/m?] Shear Thickening
Shear g "
i A //_/ ) Newtonian
s Water & _
Toothpaste Cornstarch c=ne
“““ il Shear Thinning
T n decreases with du/dy
s
Yield Latex Paint
Stress
du
----- » dy
Substance nin mPa-s Corn starch
Water (20 °C) 1,00 https://www.youtube.com/watch?v=v581Y50-bow
Blood (37 °C) Jto 25

Silly Putty
https://www.youtube.com/watch?v=GxdfoJoWNE4

Blood is non-Newtonian !

Honey =104

http://en.wikiversity.org/wiki/Fluid_Mechanics_for MAP/Introduction

=PrL

What do we need
to determine a
flow field v(r,t) ?

e Governing equations
= Continuity equation (mass conservation)

= Navier-Stokes equations (momentum conservation)

e Constitutive relations

Approximates the response of a material to external stimuli (e.g. applied
fields or forces). Link between the microscopic properties of the liquid and
the macroscopic state (p, p, T...), e.g. Fourier’s law, Fick’s law etc.

For viscous flow:c=n¢

e Boundary conditions

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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2.2 Continuity equation in fluid dynamics

e The continuity egn expresses the conservation of mass M(Q,t)

M(Q,t)= [ drp(r.t (2.2) ¢

(1) UL“ p(r,t) e
J(r,t) = p(r,t) v(r.t) (2.3) s - -
with mass flux density J(r,t) [kg/(m?2s)] N

mass density p, flow velocity v

= M(C,t) in a region € can only vary by flow through the surface 62

O,M(St) =0, /ﬂ dr p(r,t) = /ﬂ dr d,p(r, t) (2.4)
or  AM(Qt) = —]m dan. (p(r,t)v(r,t)) - —[gdr V-(p(l‘, Hv(r, f]) (2.5)
with (2.4) = (2.5) Adr [rf‘}fp(r,t) + V-(p(r, t)v(r, f))} =0 (2.6)
and the Gauss theorem (2.1) o
“Microfluidics” -~ Thomas Lehnert  EPFL (Lausanne)
=PrL
It describes the mass balance in any point of the 3D flow field.
e for compressible fluids with p(r,t) and a flow field v(r,t)
dp+ V- (p‘«') =0 or Op+V.J=0 (2.7)
V=e,0+ed,+e,0, =cd, |p=—0;(pv;) (2.8)
e for incompressible fluids
(2.9)

(set p=const and uniform, i.e. 6,0=0and 0,0=0)

Divergence of v(r,t) V-v=0 or t'f*«;t-‘; =10

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Examples: A physical flow field must fulfill the continuity
equation. For incompressible fluids the divergence of
v(r,t) is zero everywhere in the field (no source, no sink).

Viv=0 or duv,=0

vixyz) = (z,y,z2)

d 0 0

div v(x,y,2) - 3 .

sin k,y
v(X,y,z) =| coskyx
0

divv=0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=PrL

2.3 Navier-Stokes equations

1821/1822
Navier modified the Euler equations for inviscid flow 12

Claude-Louis Mavier

P('ﬂfv + IC‘*-'-vJV) = —Vp + » + Pe

...by introducing the viscous term

Euler incorrectly assumed that, similar
to the case of friction in solids, fluid
friction was proportional to pressure.

i 2o 2 o=
i
Bust of Claude Louis Marie Henri Navier at the
Ecole Nationale des Ponts et Chaussées

“The irony is that although Navier had no conception of
shear stress, he nevertheless arrived at the proper form for

>

such equations.’

Born 10 February 1785
Dijon, France

Died 21 August 1836 (aged 51 J D Anderson, 4 History of Aerodynamics (Cambridge, 1997)
Faris, France

Mationality French
! Euler, Leonhard (1757). "Principes généraux de 1'état d'équilibre d'un

A specialist in bridge building (he fluide". Mémoires de I'académie des sciences de Berlin. 11: 217-273

was the first to develop a theory of
suspension bridges). 2 Refs in S. R. Bistafa, “On the development of the Navier-Stokes equation
by Navier”, http://dx.doi.org/10.1590/1806-9126-rbef-2017-0239
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e The Navier-Stokes equations (NSE) are the equations of motion for
fluid flow.

e The NSE are a set of 3 non-linear 2"¢ order partial differential
equations for the v,(t), v,(t), v,(t) components of a flow field v(r,t).

e They express the conservation of linear momentum P(€),t) in any
point of the flow field v(r,t).

e They describe the transport by advection.

e They may be considered as Newton’s 2" |aw applied to fluid
mechanics.

= In the following the Navier-Stokes eqns will first be derived by using the
Lagrange derivative and a heuristic model.

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes eqns derived by using the Lagrange derivative

A particle is moving on a path through a 3D field
d(x,y,zt). The pathline is given by [x(t),y(t),z(t)].

How does ® change along the path of the particle ?

Tooyt) &

= Determine the Lagrange derivative for a
specific path (also called substantial or
material derivative).

= Variations of ®(x(t),y(t),z(t),t) along the path
may be determined by applying the chain
rule for the time derivative.

D  0dddx adey_l_aCD dz+6cb
Dlx(t)y(t)z(t),1) Dr - Fxdt " dyde ' 9z de ' ot
th v = dx/d Dd D ad 0 00
or with v;= ax;/at D - avx + @vy+ 57 v, FT:
The 3D Lagrange derivative can be written as D,=0,4+(v-V) (2.34)
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Navier-Stokes eqns derived by using the Lagrange derivative =PrL

How does the velocity v(xy,zt) of a particle
change on a path through a flow field v(r,t)?

In this case trajectory and velocity of the particle
are not arbitrary but determined by the flow —
field v(x,y,z,t) itself. | 5 ;".(”'Vf{f
The Lagrange derivative for the velocity J j
component v, experienced by the particle can be
written as (likewise for v, and v,):

Dv, dv, av, dv, Bv
Dt oax Ty T e
Using the previous notation D, = 0, + (v-V) (2.34)
and Newton’s 2" l[aw md,v= F.
‘ Z 4 (2.31)
The equation of motion takes the form of the Navier-Stokes equation
,‘-':Dtv:ij or plOyv + (v-V)v Zf (235)
j

where f; are force densities related to pressure, viscosity and external body forces.

=PrL

A heuristic derivation of the pressure and viscosity force densities

Pressure force density

f(X;y;Z) = 'VP(X;V;Z) A (AI.E Ay A":)
F.(0) = p(0)AyAz F.(Ax) = p(Ax)AyAz
Y
(0,0,0) T
Total pressure force in x F, = p(0) AyAz — p(Ax) AyAz

Total force density in x

p(0) AyAz — p(Ax) AyAz _ p(Az) —p(0) _
AzAyAz N Az Az—0

fa= —,p, (2.74)

which is the » component of f = —Vp. The other two components are derived similarly.
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A heuristic derivation of the pressure and viscosity force densities =

F.(Az) =n 0,v,(Az) AxAy

Viscous force density
f(xy,2) = MV?v(xy,2) (Az, Ay, Az)

G =1¢  — 4

Stress/strain rate relation- ' ]
ship for Newtonian fluids > o'(0)

A

(0.0°0) T
—)
F,(0) =1 0,v,(0) AxAy

0,v,.(Az) AxAy — 9,v,(0) AzAy B ,v,(Az) — 9,v,(0)

: .
o = n— - — pdfv,, (2.75
fa =1 ArAyA- ’* Az py 70 Y (21R)
“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)

: : : : : =P-L
The Navier-Stokes equations for incompressible fluids

Advective terms account for acceleration of fluidic
particles in unsteady or steady flow states.

= Inertial force densities

- - o

.:Ip (ﬂfv + [V-W}V)‘;z —Vp+nViv+pe +p E

~
S m—_——-

The transient term d,v is relevant if v(t) changes with time.

The non-linear term (v-V)v describes convective acceleration
(time-independent), e.g. in systems with no translation invariance.

(v-V)v is particularly relevant in turbulent flow regimes.

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)
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The Navier-Stokes equations for incompressible fluids cPrL

Body force densities

e m—— ’
- S f——_‘i
/// \\ ,// y/ \\\
/ 2 N N
— 7 Vo ]
P(aﬂ" + [V-?}V) ==Vp+Vivihipg + paE
\ /
So ! - ~ 7

Vp and V.o are surface force densities
for generated by pressure and viscous
shear stress.

For incompressible fluids V-o = nV2v

1 dynamic viscosity [Pa-s]

B “Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes equations in Cartesian coordinates

3 eqns and the continuity eqn are required to determine the 4 unknown
quantities v,, v,, v, and p. These equations describe the velocity and
pressure fields in each point (x,y,z) of a fluidic system (p, 17 = const).

(aﬁ v % + V. 6& + . %) = - a_p azvx + azvx + azvx

PUar ™ " ax Wy T 2y ax axz | ay? ' 922
ov ov v v ap d%v d*v d*v
L N L A W y v y

p(at+”xax+”yay+vzaz) ay+”(ax2 Tyt 622)

v, ov, v, v, ap 0*v, 0%v, 0%y,
P(E+”xﬁ+ oy )— "t MNae T ez T 9z
dv, 0vy, Oy,

oz oy Tz °

Boundary conditions (e.g. defined by the geometry of the device, the
pressure at inlet/outlet, fluidic interfaces, etc) determine the actual
flow patterns.

-> Analytical solutions can be found only in specific cases.

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)
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Exploring the non-linear term (v-V)v in the Navier-Stokes eqns cPrL

Example: Steady (time independent) flow through a constriction (nozzle)

= Advective acceleration of the flow

= The inertial part of the NSE is given by * Ly >
\ f
p(afv + (V-V}v) with 9,v =0 o < o—
pvy PV, (1+x/L,)
—
Rough estimate of the inertial force density f,
assuming that v, increases by V,, over L,,.

V, and L, are characteristic scales of the system.

v dv, pVg 3
. = —_— e, ———— N . m-
fl PYo— L, [ ]
T. M. Squires and S. R. Quake: Microfluidics:
Fluid physics at the nanoliter scale
“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
Exploring the non-linear term (v-V)v in the Navier-Stokes eqns cPrL

Example: Inviscid flow (neglecting viscosity) in a
pressure field.

[V-V}v) — V)

e.g. only pressure gradient in x-direction

(avx dv, v, va) dp

gt T TGy TG,

A pressure force in x-direction generates

velocity/gradient components in x,y,z directions. Turbulences on marcoscale due to fluidic inertia
This results in flow instabilities and turbulences !

In microfluidics inertial forces are normally negligible with respect to viscous
forces (see below the discussions on Reynolds number and Stokes flow).

Examples of microfluidic systems where inertial fluidic properties are relevant
will be shown later (e.g. secondary Dean flow for mixing).

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)
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Navier-Stokes equations (General theoretical derivation)

More details in Henrik Bruus “Theoretical Microfluidics”

P(Q,t) in a region Q can vary by
momentum flow (convection) through
the surface 6Q2 and by action of forces.

pvii

——— DU
o, P™ (Q,t) = — / da n-(pv, v) /
Jon pwii (2.13)
Momentum flux density tensor I1 I = PVV HL- = pu,v; (2.12)
The total rate of change of the i-th component O,P, of the MOMENTUM  FLAY
momentum in the region Q is given by the surface integral 0Q L_)Qfa ﬂ)
over the flow n-(pv,)v da of the i-th component through (da n). —5755_1
B P -0 y \ P S / \ P, ,'\, \ P bod r \
8,P,(Q,t) = 8,P™ (Q,1) + 8,PP™ (Q,t) + 8,P™ (0, t) + 8,P"°¥ (Q, 1)
(2.11)

Viscous forces on 0Q2

The viscous stress tensor o’ relates all possible combinations of surface force
components and surface orientations. The stress tensor ¢ allows calculating stress
forces occurring on any arbitrary surface of a control volume.

9, PY5¢(0), 1)

1. '
/ dan i Tij
J a0

(o7} Ozy
Oy A Owy
vl P
1 d
o 17
e > Oyxz Yomm e > ny
z
Ozx .
? 1nyx O xx
v
1 ’
Y S > Oxx o xy
I
4 O xz
X

(2.16)

rf:j =7 (Uiz’j + c")jz'I)
(2.17)

dF; = o;;n; da

i-th component of the friction force acting
on a surface element (n; da)

= n(0,v, + 0,v,) =0 (p = const, no p)

= n(0,vy + 3,vy) dF, = 0'yyn,da

= n(0,v; + 0,vy) dF, = Osz n,da

Remark: In other literature the viscous stress tensor is often denoted © (1 = o ). The indices z; also are
often inversed, i.e. the first index indicates the surface normal, and the second index the force direction.
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e Viscous forces on 0Q2 9, PYEe(Q, 1) = / dan; oy (2.16)
Jaa
. . / P o . 9 o =
Compressible fluid 0 =1 (()j v; + 0, l‘j> + (¢ — 571)(()1\-%) 0;j  (218b)
Incompressible fluid o. =1 ((-) v. +0.v ) -
: >V i = U U, and 0O, =0 ,
(uniform viscosity 7) ij = T\ %% 3 St (2.20)
The shear stress tensor ¢’ is symmetric o’ = o’;
Shear forces appear as off-diagonal elements.
n is the dynamic viscosity due to shear stress.
¢ stands for internal friction due to compression/stretching.
* Pressure forces on 0Q)
Normal to the surface, may be included in o as diagonal elements
0, =—p0b,. + 0}
ij = PO 1] (2.26)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

= Applying the Gauss theorem to the net rate of change AP, in Qin eqn. (2.11)

* Navier-Stokes equation for compressible Newtonian fluids
n = const, ¢ = const, and p(r,t)

p(rf}fv + {V-VJV) =-Vp+ -r;r'\?g‘v' + (%?? + C)V(V'VJ +pg + poE (2.29)

n is the dynamic viscosity due to shear stress.

¢ stands for internal friction due to compression/extension.

e Navier-Stokes equation for incompressible Newtonian fluids

p =const, n=const

P(afv + (v-VJV) = -Vp+ VvV +pg +poE (230)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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2.4 Solutions for simple flow problems

* The USS 1 million problem: Navier-Stokes equations are a system of non-
linear coupled partial differential eqns. p(v-V)v accounts for interesting
hydrodynamic phenomena, but...they are unsolved !

Woaves follow our boat as we meander across the lake, and
turbulent air currents follow our flight in a modern jet.
Mathematicians and physicists believe that an explanation for and
the prediction of both the breeze and the turbulence can be found
through an understanding of solutions to the Navier-Stokes
equations. Although these equations were written downin the
19th Century, our understanding of them remains minimal. The
challenge is to make substantial progress toward a mathematical
theory which will unlock the secrets hidden in the Navier-Stokes
equations.

http://www.claymath.org/millennium-problems

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=PrL

Approaches for solving the Navier-Stokes equations

Analytical techniques (direct integration, eigenfunction
expansion etc.) may be used only for simple geometries,
otherwise numerical solutions.

Simplifications of the NSE may be possible in specific cases
(e.g. Stokes eqn at low Re number, Laplace eqn for irrotational
flow, boundary eqgn).

Initial and boundary conditions for v and/or Vv, stress components,
and pressure have to be defined to determine the flow and
pressure fields for a given system.

v(r) =0, for r € 90} (no-=lip) (3.1)

No-slip boundary condition for a motionless wall

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Taylor-Couette flow

Viscous fluid confined in the gap between two rotating cylinders.

Good model system to study flow instabilities and transitions.

Re < Recritical

Couette flow purely azimuthal and laminar
(bearing flow).
Application: Rheometers for measuring 7

Re > Recritical

Axial position [mm]

Flow becomes unstable and toroidal vortices
emerge (Taylor vortex flow).

Re >> Recritical

o .
e Flow has different turbulent patterns.

Fixed
cylinder

Rotating
cylinder

Velocity
m@ | profile

Fluid

https://doi.org/10.1051/epjconf/201921302014
https://en.wikipedia.org/wiki/Taylor-Couette_flow

Couette flow between two moving parallel plates

=

L e (Fig. 3.3)

0 = L

=0 z

Fluid between two infinite parallel plates. The top plate moves in x-direction with
constant speed v,, resulting in a linear flow velocity profile v,(z) in z-direction.

- i - = ; - :2 | —
Navier-Stokes eqn (p = const) nd v=0 (313)
- Translation invariance along x, y vir)=v,(z)e, and (v-V)v=0
- using the no-slip boundary conditions v,(0)=0 and v,(h)=v,
z
- Solution: Linear velocity profile v,(z) = 1y 7 (3.15)
1
i i / vpA
Force required to move the plate (with surface A) F,=0,,  A=n ; (3.16)
1

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Liquid film flow on an inclined plane

o (Fig. 3.2)

Liquid film flowing down the plane has a half-parabolic velocity profile in steady-state.
(e.g. a 100 um thick water film flows at a mean velocity of 1 cm/s)

- Navier-Stokes eqgn p(v-V)v=n082v+pgsinae, (3.9)
with v(r)=uv,(z)e, and (v-V)v=1,(2)8,[v.(z)] =0 (3.10)
= 2" order linear eqn n92v,(z) = —pgsina (3.11)
boundary conditions v,(0)=0 no-slip
nov,(h) =0 no stress
- Half-parabola solution v, () = sina ;Ti (2h — =)= (3.12)

= see also the full parabolic profile for Poiseuille flow discussed in Chapter 3.

2.5 Reynolds number and Stokes flow =PrL

Osborne Reynolds Philosophical Transactions of the Royal Scociety 1883

84 Mr. 0. Reynolds. [Mar. 15,

III. # An Experimental Investigation of the Circumstances which
Determine whether the Motion of Water ghall be Direct or
Sinunous, and of the Law of Resistance in Parallel Chau-
nels,” By OsporNE Reyvyorps, FLR.8. Received March 7,

Born 23 August 1842 Flow regimes
Belfast, Ireland
Died 21 February 1912 (aged 69) —
\Watchet, Somerset, England '/ .
Laminar flow
Nationality United Kingdam
Fields Physics
‘2?7”(0" nu“Ld“ Turbulent flow
4
7 _ ¢/
Rez —= — 73%

Turbulent flow (observed with an electric spark)

for Re 2 Re_,;, >> 1 = turbulent flow regime
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Different flow regimes =PrL

Transition from laminar to turbulent flow in a tube with increasing flow speed

(Reproduction of Reynold’s original experiment)

™

https://www.youtube.com/watch?v=XOLI2KeDiOg

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Dimensionless form of the Navier-Stokes equations =PrL
Navier-Stokes eqgn P("—}r" + ["'VJ‘“’) = —-Vp+nV-v
The general fluidic properties of a system can be evaluated by using
characteristic scales determined by the boundary conditions: L, , V,
Dimensionless (normalized) . ~
) r=>L,I =
forms can be derived for all o V=(1/Ly) V
variables, for instance... v=V,Vv
In microfluidics, the pressure p is V.
. . _ Mo ~ _ p =~
normalized by a characteristic p=—p=5Fp (2.46)
shear stress nV,/L,. Ly -

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Dimensionless form of the Navier-Stokes equations =PrL

= Making the Navier-Stokes eqns dimensionless

/SN Bye. Vi
LL{V-V)\:}:—-- vj+ o
0

ifonv=0 p U
t L’O LU

vy (2337)

]

Dimensionless form I - ~ 2
of the NSE Re (V-V}V} =-Vp+V v (2.38)
Reynolds number Re= P Vo Lo PVe*lLy . inertial force (2.39)
n nV,y/L,? viscous force
. Re . _ e Y
if Bv =0 P\ 5 I+ R (97| = -V + V% (237)
Strouhal number St=T,V,/L,
St accounts for a characteristic time scale T,, e.g. defined by oscillating
boundaries. Describes internal flow instabilities (vortex formation).
Some values for Reynolds numbers =PrL

Re numbers are important for scaling of fluidic systems.

Re numbers may be defined in different ways, depending on the characteristic scales of the
specific system (e.g. width of a channel, length of a body, etc).

Typical values for microfluidic devices:
water, 1 um/s - 1 cm/s, channel 1 - 100 um
= Re range between O (10¢) to O(10°)

Microorganisms ~10%-103

Blood flow in brain ~1 x 102
Blood flow in aorta ~1 x 103

Human swimming  ~ 10%- 10°

Fastest Fish ~10°

Large ship ~10°

Onset of turbulent flow

Flow in a pipe 2.3x10% to 5.0x10%
Boundary layers up to 1086

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Patterns for rising Re

Example: Flow past a sphere for rising Re numbers

Streamlines of a flow over a sphere with
increasing flow speed (water flowing from left to
right, @ =~ 19 mm). The inertial (v-V)v term
becomes increasingly important.

- Laminar flow for low Re < 10
- Vortex ring develops at Re = 30

- Wake increases in size, becomes
comparable to sphere size at Re = 130

- Wake remains attached for Re < 500

- Re > 500, vortices begin to be shed

Karman vortex street
S. Taneda, J. Phys. Soc. Japan, Vol. 11(10), p. 1104-1108 (1956)

Inertial microfluidics

In microfluidics fluid inertia is normally
negligible (Stokes flow, Re «< 1).

Inertial microfluidics works in between
Stokes and turbulent regimes (inertia and
fluid viscosity are finite, ~1 < Re < ~100).

Random particle
distribution #

A g
o*

L

Inlet

L ]
® e
Outlet

Particle sorting by inertial lift forces

J. Zhang et al., Fundamentals and applications of inertial Vortices in expanding channels
microfluidics: a review, Lab Chip, 2016, 16, 10 for cell trapping
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Stokes flow and Stokes equations

Stokes, G. G.
Sir George Stokes, Bt. On the Effect of the Internal Friction of Fluids on the
Motion of Pendulums
Transactions of the Cambridge Philosophical Society,

Vol. 9, pp. 8-93, 1851

He assumed that the flow is so slow that advective
acceleration of the fluid as it passes around the
sphere can be ignored, (v-V)v =0.

/ e \“\\‘“‘\
Born 13 August 1819 —_////{ Y \\\ \“:-:‘-;

Skreen, County Sligo, — - R —
Ireland P t 4 e
Died 1 February 1903 (aged 83) \ K i /;/"“
Cambridge, England \ \\\\Q“:—’;/// /
Fields Mathematics and physics \“\ t—//"i’
S T . = il
Institutions University of Cambridge '\\\ e S _—

The flow pattern is symmetrical front to back

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=PrL

Stokes flow and Stokes equations

Stokes equation 0 =-Vp+ ?}?Ev (2.41)

Stokes flow or “creeping flow” (very slow !)
Significant simplification. Relevant for microfluidics !

A linear egn with analytical solutions is some cases.

Reynolds introduced “his” number only in 1883, i.e. more than 30 after Stokes’
intuitive approach.

For Re << 1 the non-linear term p(v-V)v in the Navier-
Stokes equation can indeed be neglected.

Re[(i’-ﬁ’){f] = _Vp+ v’y

Re < 0.1 is a good rule of thumb that the Stokes eqns are
a good approximation of a real flow problem.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Stokes flow and Stokes equations

0 = —Vp+1nViv

Expanded form + continuity egn
(no external forces, o,v = 0).

p (azvx %v, 9%v,

ox "\ ox2 T ay2+ dz?

ap d*v,  0%v, 0d%v,
a—y =7 ( + +

dx? dy? dz?

dp 9%v, %v, 9%,
0z dx? dy? = 0z?
v, dv, Jv,

dx 8y+az:0

=PrL

(2.41)
May be simplified for specific cases :

Taking the divergence (V-_) of (2.41) results in
a Laplace equation for the pressure field p(r),
useful if boundary conditions are specified in
terms of pressure.

Vzp =0 (2.45)

Taking the curl (V x _) of (2.41) results in a
simple equation for the vorticity (0 =V x v),
useful if boundary conditions are specified in
terms of velocitiy.

Vi =0 (2.44)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Properties of Stokes flow

Laminar flow pattern

Linear in pressure and velocity
(superposability of flow solutions).

Instantaneity: No dependence on time
except through time-dependent
boundary conditions.

Time reversibility of the flow. Flow
symmetry around (before/after) an
obstacle.

Uniqueness = no flow instabilities.

Minimum of dissipation of kinetic
energy.

=PrL

Microfluidic artwork showing laminar flow patterns.

Tesla valve. In the Stokes flow regime no “valving” effect is
observed for inverted flow directions as forward and
reverse flow paths.

see also Taylor—Couette flow in two rotating cylinders: https://www.youtube.com/watch?v=p08_KITKP50
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The transient form of the Stokes equation cPFL

o # 0 = Transient form of the Stokes equation pd,v = —Vp + Vv

Example: Ap =0 for t > 0 (relaxing flow)

_ 2
Stokes eqgn takes the form of a momentum 0,v = vV
diffusion equation with the diffusion constant
v = n/p (kinematic viscosity [m?/s])
P
Estimation of the time scale 7, to establish/or to stop a fi o 2
steady laminar flow upon application/release of an external — Ta~ pLO
pressure difference Ap. Balance of unsteady inertial and u~n_‘g() 0 n
viscous force densities Ly
=~ 10 ms for a 100 pm channel
A t<0 A t=0 A t>0 S
e M N
— — i~
— —\ —
PHAp —pt (P —p" PP = PP P L,
- g -~
- > > > >
V=V, I V=V, I v<V, I v=0 z

=PrL

Unbounded Stokes flow around a sphere - Viscous drag force

= Determine the viscous force F, (Stokes drag force) acting on a rigid sphere (microbead,
radius a) moving with velocity v,

AR r =17 sinf cos o
' y =17 sinf sin ¢

Stokes (1851) derived the viscous drag force #=1G050 A

F, on a sphere by solving a simplified version ' Y

of the Navier-Stokes eqns analytically. .
“Stokes paradox”: There is no non-trivial (Fig. C2)
solution for the Stokes equations around an Due to symmetry only the radial co-ordinate r and the
infinitely long cylinder. polar angle @ enters in the calculation. The coordinate

system may be chosen with the bead at rest and liquid
flowing around.
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Unbounded Stokes flow around a sphere

Creeping flow (Re <<1): Acceleration can be ignored / inertial forces (v-V)v =0.

The fluid is further slowed down due to viscous forces when passing the bead surface.

Re=nadV,/p <« 1 ‘ Y
/ o// | = H \\\

VQV::%VU)

N
\!

NN
" e - /'///
1 NG e
o g 1o 2 @
. = {0 C0S —_
¥ a I o3

"W

“anping,

- = 3':1 alj
vy, = —V,sinf [1 T 4.,13]

Velocity field v(r, 0) in terms of a power series in
a/r. Boundary conditions: v(a) = 0 and v(x) = v,

HHHHHBHHHTY / /
WM

AWWWWN BT,
AME R,

AT

-~
-
-~
-~
—
—
—-
—
—
—_—

A

The flow pattern is symmetrical front to back

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Unbounded Stokes flow around a sphere

flow
—_—

shear stress

4 ;. 30V%

Tp, =

sinf
2a
Pressure field on the sphere

(radius a, p* = ambient pressure) Shear stress on the surface of
a sphere (radius a)

“Microfluidics”-- Thomas Lehnert -- EPFL (Lausanne)

(3.126)
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Unbounded Stokes flow around a sphere =PrL

InV; 3InVy .
p=p*— 10 050 Tgr = — 0 gin (3.126)
2a 2a

Pressure field on the sphere Shear stress on a sphere

= The drag force F, can be derived from the stress tensor o as integral over the
surface force densities (including the normal p components).

‘Stokes Law’ for the viscous drag force on a sphere F drag = 671 aVy (3.127)
accurate for Re < 0.2

Corrections:

Drag coefficient starts deviating for ~Re > 0.2 Farag = 6TNAV (1 + 0.15-Re®%%7)

J. Zhang et al., Fundamentals and applications of inertia 0.2 < Re < 500-1000

microfluidics: a review, Lab Chip, 2016, 16, 10

Drag on a sphere will be up to a factor 3 higher in the vicinity of a solid wall.

Life at small scale and low Re number cPrL

Reynolds Number

A large whale swimming at 10 m s-! 300,000,000
A bacterium, swimming at 0.01 mm s=! 0.00001

Propulsion mechanisms at high Re-numbers (humans,
fish, etc.) are based on inertial effects, e.g. fins.

..but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !

Example: A human swimming with v = 1 mm/h in
honey (L = 2m, n = 10 Pas, p = 1.5 kg/l)
corresponds to Re = 10%. A microorganism would
probably feel like this.

At low Re-numbers any reciprocal motion (even if fast in
one direction and slow in the return direction) does not
result in forward motion due to the reversibility of the
po Rhar T To Stokes flow.

addle forward viscous corn syrup.

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE
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L. corkscrew.

Fhag pthurn

=PrL

e = Microorganism have developed other
' propulsion mechanisms, such as flagella or
cilia, working as a flexible oar or as a

Deforming the shape of the paddle breaks the

symmetry of the stroke, creating more drag on

Life in moving fluids: the physical biology of flow
by S. Vogel (1996)

-00:00:00.88

the power stroke than on the recovery stroke.

PARAMECIUM (50 to 330 um, an abundant genus Illustration of an Escherichia coli based on a SEM micrograph. These
of unicellular ciliates) covered with hair-like cilia. bacteria use flagella for propulsion. (A. Eckert and J. Oosthuizen)

=PrL

For microorganism swimming in water becomes very difficult, although the

viscosity is very low (77 =1 mPa:s).

Re =0.025

/ dragged marker

" Protozoa

http://www.youtube.com/watch?v=gZk2bMags1E

A bacteria typically moves at 20-40 um/s. It
takes him about 0.1 A and 0.3 s to stop.

E.M. Purcell, Life at low Re number, America Journal of Physics, Vol. 45, p. 3-11 (1997)

Dusenbery, David B. (2009). Living at Micro Scale, Harvard University Press, Cambridge.

A protozoa (length 250 um, 100
um/s) drags water at a distances
up to 250 um (and more). Added
mass ~200 pg, i.e. 100 x cell mass
of ~2 ug

= As if a human would swim with
10 tons attached to the feet !

30 Mfsec

_! Ceéntipoise 2= 102 om™sec
K =Zet0

o
{Caasﬁ'nq distance = 0.l /4 }

coastng Fime = 0.3 ruCrusec.
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2.6 Hydrodynamic focusing =PrL

Example 1: 2D hydrodynamic focusing
A. Jahn, etal., J. Am. Chem. Soc., 2004, 126 (9), 2674-2675

- Laminar flow conditions can be used to create well-defined fluidic interfaces,
e.g. to focus fluid streams hydrodynamically.

- Principle: A central stream (wy, Q;) is squeezed by a lateral sheath flow (2 x Q,/2)

- Applications: Laminar mixers, cell cytometers, single molecule detection, etc.

Mass flow balance for Q,:

O = vavgh = v D

channel f

Total flow balance in channel f:

Qf=QS+QB=Vfoh

Width of focused steam:

Dy
Wg =

by

2D hydrodynamic focusing on a planar chip with two sheath flows.
Silicon/glass microchannels: height 40 um, width D=D; =200 um.
Total flow = 150 ul/min, Q,/Q, ~ 20 = wy, ~10 um.

Example 2: 3D hydrodynamic focusing using Dean flow

- On-chip 3D focusing combining laminar sheath flow and inertial effects.

- Re number must be high enough to allow for circulating secondary flow (~1 < Re < ~100).
- Simplifies fluidic design and control, but high flow speeds !

Dean flow

Inhomogeneous flow profile causes centrifugal
forces driving a circulating flow in slightly curved
channels (R >> w).

The magnitude of the centrifugal force density is
greatest in the center, where the primary flow is
fastest: f, ~V2[1-(r/w)*]>/R

Stable solution with a pair of vortices occur for low
Dean numbers (< 950).

T. M. Squires et al, 2005, Rev. Mod. Phys., 77, 977-1026
De ~ Re (w/2R)°>

w is the of the tube diameter or channel width, R is the radius of (see also Chapter 4.2.5: “A multivortex mixer

curvature of the path of the channel. based on inertial flow properties”)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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Example of a single-layer planar device (PDMS)

The secondary flow velocity field shows strong
Dean vortices.

Wertical focusing

= “Microfluidic drifting” resulting in stretching = -
of the sample flow acroos the channel width ) e
(vertical focusing, red). 9 et -

Sampie

= Two lateral sheath flows are introduced for = ]
horizontal focusing. I W

Re=74(!), De~43

High flow speed in the range of * m/s !

Cross-sectional profiles of the fluorescein dye concentration

X. Mao et al., Lab Chip, 2007, 7, 1260-1262 in the focusing device. Inset: simulation of the secondary
flow velocity field shows Dean vortices in the 90° curve.
X. Mao et al., Lab Chip, 2009, 9, 1583-1589

Channel w =100 um, h=75 um, L = 1cm, R, = 250 pm

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=PrL

Focused beam & <15 pm

The 3D architecture of the sample flow
during the focusing process characterized by
confocal microscopy (fluorescein solution).

14
agd 0™ st

Inlet A: Cells or particles; Inlet B: vertical focusing
sheath flow; Inlets C and D: horizontal focusing

) sheath flows. Inset 2 represent the Dean vortices.
X. Mao etal., Lab Chip, 2007, 7, 1260-1262 Laser-induced fluorescent detection is shown.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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3D focusing for on-chip cytometry

[EEEE
-l_

Video (see Sl in the article)

Side view of the particle flow with focusing height ~12 pum: Particle velocity 3.6 m s, 1700 particles/s™

X. Mao et al., Lab Chip, 2007, 7, 1260-1262

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
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