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The theoretical parts of this course are mainly based on:

Theoretical Microfluidics 
Henrik Bruus
Oxford University Press, 2008 (Reprint 2010)
(ISBN 978-0-19-923509-4)

Equation/figure numbering in PART I of these lecture notes
refers to the indicated edition of the book.

Numbering in PART II refers to an earlier edition !

All other references are indicated in the text.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Further reading:

J. Kirby, Micro- and nanoscale fluid mechanics: Transport in microfluidic devices
Cambridge University Press 2010, ISBN: 978-0-521-11903-0

NT. Nguyen and S.T. Wereley, Fundamentals and applications of microfluidics
Boston, Mass.: Artech House, 2006, ISBN: 1-58053-972-6

P. Tabeling, Introduction to microfluidics
Oxford University Press 2005, ISBN: 0-19-856864-9

T.M. Squires and S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale
Reviews of Modern Physics, Vol. 77, pp. 977-1026 (2005)
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1. Introduction

2. Governing equations and flow solutions

3. Microfluidic channels and circuits 

4. Diffusion and mixing in microscale

5. Capillary effects and microdroplets

Course topics

Part I: T. Lehnert (EPFL-LMIS2)

“Theoretical” microfluidics and more… 

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

1. Electrohydrodynamics
Debye-layer, electro-osmotic flow, (di-)electrophoresis 

2. Magnetophoresis

3.    Nanofluidics

Part II: Prof. M.A.M. Gijs (EPFL-LMIS2)

Course topics
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Part I (T. Lehnert)
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1. INTRODUCTION

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Tallest known tree on earth: “Hyperion” 115.7 m !
Redwood (sequoia sempervirens)
The height seems to be limited by increasing water
transport constrains, eventually slowing height
growth by reducing photosynthetic carbon gain.

p(H2O)

Microfluidics ?

G.W. Koch et al., “The limits to tree height”
Nature, Vol 428, p. 851-853 (2004)

cm

[m]

10 bar

Water transport system in vascular plants

Nature is based on powerful microfluidic systems

Variation in leaf structure with height in redwood.

A large oak tree transpires > 400 L/day
[en.wikipedia.org/wiki/Transpiration]
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Transport of water occurs through tube-like vessels
(  10 - 100 m, Xylem, ξυλον - wood).

Evaporation through leaf pores ( < 10 m) is one of the
major driving forces for pulling up through the tree trunk.

10 m

Leaf pore

bio1151.nicerweb.com/Locked/media/ch35/ 

Xylem

Microfluidics !

F. Meinzera et al., “Water transport in trees: current 
perspectives, new insights and some controversies”, Env.  
and  Exp.  Botany  45 (2001)  239-262

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

https://www.youtube.com/watch?v=7kHZ0a_6TxY

“Trees talk to each other”: The whole forest is actually a “microfluidic system” 
forming an underground communication network of roots and fungal mycelium. 

Wood-wide web: One tree is connected to many others

Fungi
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V  5L, flow rate at rest  5L/min.
Networks of blood (and lymphatic) capillaries
( ≈ 5-10 m) span over the lung and other
organs (exchange of water, O2/CO2 , nutrients,
chemical waste).

Total length 100000 km (!) (80% capillaries).

The human cardiovascular system 

en.wikipedia.org/wiki/Hemodynamics

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)en.wikipedia.org/wiki/Hemodynamics

  20 m

0.03 cm/s40 cm/s

4500-6000 cm2

Aorta: 3-5 cm2

Red blood cell in a blood capillary

1 m
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Microfluidic technologies (Lab-on-a-Chip) 
Platforms for bioengineering, bio-chemical assays, bio-analytical applications, etc.

Automated electrophoresis
of DNA, RNA, and protein
samples (e.g. Agilent 2100
Bioanalyzer, Caliper 1999 )

Point-of-care testing
to perform diagnostic
tests without no
laboratory support
(e.g. immunoassays,
nucleic acid assays...)

www.youtube.com/watch?v=wPLzI4bEVc4

Many review article are available !

P. Abgrall and A-M Gué, Lab-on-chip technologies: making a
microfluidic network and coupling it into a complete
microsystem—a review, J. Micromech. Microeng. 17 R15, 2007.

N. Azizipour et al., Evolution of Biochip Technology: A Review from
Lab-on-a-Chip to Organ-on-a-Chip, Micromachines, 11, 599, 2020.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

DNA  2 nm
Nanopores

Silicon atoms

Proteins

http://htwins.net/scale2/

0.1 nm

1 nm

10 nm

100 nm

1 m
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Cells on-chips

Nanofluidics

Yeast cell division
10 μm

Microbeads
Viruses

Proteins/DNA chips

Typical parameter range for microfluidic chips

- Channel width  100 µm / height  1-10 m
- Flow rates from nL/s to L/s
- Flow velocity m/s to mm/s (up to m/s) 
- Volumes L to pL (e.g. droplets) 
- Materials: Polymers and glass

C. elegans worms  1 mm

Microfluidic and nanofluidic systems
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Niagara falls: Average flow rate 2000 m3/s 

Flow patterns and solid body/liquid interactions

Swimming protozoa

Macrofluidics - Microfluidics: What makes the difference ? 

Jumping humpback whale
L ≈ 15 m, speed 20-50 km/h. Large fins

L  100 m, speed  100 m/s - Flagella, cilia

Can it jump out ?

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Small bouncing water droplet falling onto a super-
hydrophobic surface.

http://www.youtube.com/watch?v=riXp_Q-fDv8

 On the microscale our intuition may fail !

Macrofluidics - Microfluidics: What makes the difference ? 
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Size matters: Effects of downscaling are important !

 Volume forces (inertial forces and
gravity) become negligible. Viscous
forces dominate.

 Interfacial/capillary forces determine the
liquid shape and driving forces.
Techniques exploiting boundary effects
can be effective in microfluidic systems
(e.g. electrokinetic effects).

 Dimensionless numbers may be defined
to evaluate the relative importance of
competing forces.

Macrofluidics - Microfluidics: What makes the difference ? 

Small raindrop 
  mm, V  50 L

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

10 / 106



“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Reminder: Some basic mathematical notations

• Position vector

• Einstein summation convention or index notation: Repeated index implies summation 
over that index.

vector (e.g. flow velocity)

scalar or dot product

• Differential operators (containing partial spatial derivatives)

(Nabla operator)
(Laplace operator)

• The gradient of a scalar field is a vector field 

• The divergence of a vector field is a scalar field

• The gradient of a vector field is a dyadic product of two vectors (matrix) 

(1.18)

(1.11)

(1.10)

(1.9)

p = exxp + eyyp + ezzp = eiip

(1.17)
 

v  ivj

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

• Derivatives of a function F(r(t),t)

- Partial derivatives

- Total time derivative

(1.19)

(1.16)

(1.15)

• Gauss theorem
The volume integral over the divergence ·V(r) of a vector field V(r) in a
region  is equal to the surface integral over  of (n·V da), i.e. the flux of
the quantity V(r) through a surface area da with the normal vector n.

(2.1)
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2.1 Flow kinematics and shear stress

2.2 Continuity equation in fluid dynamics

2.3 Navier-Stokes equations

2.4 Simple flow solutions

2.5 Reynolds number and Stokes flow

2.6 Hydrodynamic focusing (Examples)

2. Governing equations and 
flow solutions

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

• Fluid: Deforms continuously at a measurable rate:
strain rate 

• Force gradients or non-uniform stress (force per
unit area) change the shape of “fluidic elements”.

• Velocity gradients v are important.
• Viscous stress dominates in microfluidic systems !

forces

Microfluidic laminar flow patterns 
with bubbles

Continuum description: Fields of macroscopic
parameters. Partial differential equations
define local properties of a system.

Example: Flow around a wing
v(r,t) field (arrows) – Vector field: direction and length
p(r,t) field (colors) – Scalar field: “value”, no direction

2.1 Flow kinematics and shear stress
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3D velocity (vector) field 
v(r,t) = v(vx,vy,vz,t)  u(r,t) = u(u,v,w,t)

u is a dyadic product of the two vectors 
and u (rank-2 tensor, not the dot product !)

v(r)
v(r)

Velocity gradient tensor

Streamlines around cylindrical obstacles.

2.1 Flow kinematics and shear stress

(9 components)
(3 spatial components) (+ time) General case including all

possible velocity field gradients
of a velocity field u(u,v,w).

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

 Vorticity: Fluidic elements may also rotate (not considered here)

 Extension/Shear deformation: Symmetric strain rate tensor 
(6 components)

 Translation: without deformation (no velocity gradients)

The strain rate ij [s-1] is a
measure for the velocity
gradient u at a given point
(r,t) of the fluidic system. u  v

here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : Transport in microfluidic devices

Example: Strain rate xy = t
for v = vx(y) in x-direction.
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pure shear strain
(symmetric off-diagonal elements of )

• Examples: Strain of a fluidic element in specific flow fields

2D flow fields u(u,v)

1 0
0    -1ext = 

shear = 0    1
1    0

pure extensional strain
(diagonal elements of )

 = 0 for incompressible fluids ! 

u = x, v = -y

u = y, v = x

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

 The strain rate tensor is related to the stress tensor 

 =  

 (T) [Pa·s] is the dynamic viscosity 

 = constant (for T = const)  Newtonian fluids

  (u) Non-Newtonian fluids

   in the following sections and in literature ! 

In microfluidics the viscous flow regime is
predominate, thus the viscous stress tensor is of
fundamental importance!
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Non-Newtonian fluids  (u)

 increases with du/dy

 decreases with du/dy

[N/m2]

 =  

e.g. fluids containing long polymers or colloidal systems (e.g. blood).

https://www.youtube.com/watch?v=v581Y50-bow

https://www.youtube.com/watch?v=GxdfoJoWNE4
Silly Putty

Corn starch

Blood is non-Newtonian !

http://en.wikiversity.org/wiki/Fluid_Mechanics_for_MAP/Introduction

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

What do we need 
to determine a 

flow field v(r,t) ?

• Governing equations
 Continuity equation (mass conservation)
 Navier-Stokes equations (momentum conservation)

• Constitutive relations
Approximates the response of a material to external stimuli (e.g. applied
fields or forces). Link between the microscopic properties of the liquid and
the macroscopic state (, p, T…), e.g. Fourier’s law, Fick’s law etc.
For viscous flow:  =  

• Boundary conditions
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2.2 Continuity equation in fluid dynamics

with          = (2.6)

(2.5)

(2.4)

(2.4) (2.5)

(2.2)

(2.3)

• The continuity eqn expresses the conservation of mass M(,t)

with mass flux density J(r,t) [kg/(m2s)] 
mass density , flow velocity v

M(,t) in a region  can only vary by flow through the surface 

or

and the Gauss theorem (2.1)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

• for compressible fluids with (r,t) and a flow field v(r,t)

• for incompressible fluids 
(set  = const and uniform, i.e. t = 0 and i = 0) 

(2.7)

(2.9)

(2.8)

It describes the mass balance in any point of the 3D flow field.

Divergence of v(r,t) 
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Examples: A physical flow field must fulfill the continuity
equation. For incompressible fluids the divergence of
v(r,t) is zero everywhere in the field (no source, no sink).

div v = 0

v(x,y,z)

div v(x,y,z)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

J D Anderson, A History of Aerodynamics (Cambridge, 1997)

“The irony is that although Navier had no conception of
shear stress, he nevertheless arrived at the proper form for
such equations.”

1821/1822 

Navier modified the Euler equations for inviscid flow 1,2

…by introducing the viscous term

2.3  Navier-Stokes equations

A specialist in bridge building (he
was the first to develop a theory of
suspension bridges).

1 Euler, Leonhard (1757). "Principes généraux de l'état d'équilibre d'un 
fluide". Mémoires de l'académie des sciences de Berlin. 11: 217–273

2 Refs in S. R. Bistafa, “On the development of the Navier–Stokes equation 
by Navier”, http://dx.doi.org/10.1590/1806-9126-rbef-2017-0239

Euler incorrectly assumed that, similar
to the case of friction in solids, fluid
friction was proportional to pressure.
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• The Navier-Stokes equations (NSE) are the equations of motion for
fluid flow.

• The NSE are a set of 3 non-linear 2nd order partial differential
equations for the vx(t), vy(t), vz(t) components of a flow field v(r,t).

• They express the conservation of linear momentum P(,t) in any
point of the flow field v(r,t).

• They describe the transport by advection.
• They may be considered as Newton’s 2nd law applied to fluid

mechanics.

 In the following the Navier-Stokes eqns will first be derived by using the 
Lagrange derivative and a heuristic model.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes eqns derived by using the Lagrange derivative

or with vi = dxi/dt

 Determine the Lagrange derivative for a
specific path (also called substantial or
material derivative).

 Variations of (x(t),y(t),z(t),t) along the path
may be determined by applying the chain
rule for the time derivative.

T(x,y,t)

x(t),y(t)

(x(t),y(t),z(t),t)

The 3D Lagrange derivative can be written as (2.34)

A particle is moving on a path through a 3D field
(x,y,z,t). The pathline is given by [x(t),y(t),z(t)].
How does  change along the path of the particle ?
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In this case trajectory and velocity of the particle
are not arbitrary but determined by the flow
field v(x,y,z,t) itself.

The Lagrange derivative for the velocity
component vx experienced by the particle can be
written as (likewise for vy and vz):

How does the velocity v(x,y,z,t) of a particle
change on a path through a flow field v(r,t)?

Using the previous notation

and Newton’s 2nd law

The equation of motion takes the form of the Navier-Stokes equation

or

(2.34)

(2.31)

(2.35)

Navier-Stokes eqns derived by using the Lagrange derivative

v(x,y,t)

x(t),y(t)

where fj are force densities related to pressure, viscosity and external body forces.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

A heuristic derivation of the pressure and viscosity force densities

Fx(0) = p(0)yz Fx(x) = p(x)yz

Total pressure force in x  

Total force density in x  

Pressure force density
f(x,y,z) = -p(x,y,z)
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A heuristic derivation of the pressure and viscosity force densities

Fx(0) = zvx(0) xy

Fx(z) = zvx(z) xy

 =  
Stress/strain rate relation-
ship for Newtonian fluids

Viscous force density
f(x,y,z) = 2v(x,y,z)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

The Navier-Stokes equations for incompressible fluids

Advective terms account for acceleration of fluidic
particles in unsteady or steady flow states.
 Inertial force densities

The transient term tv is relevant if v(t) changes with time.
The non-linear term (v)v describes convective acceleration
(time-independent), e.g. in systems with no translation invariance.
(v)v is particularly relevant in turbulent flow regimes.
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Body force densities

p and · are surface force densities
for generated by pressure and viscous
shear stress.

For incompressible fluids · = 2v

 dynamic viscosity [Pa·s]

B

The Navier-Stokes equations for incompressible fluids

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

3 eqns and the continuity eqn are required to determine the 4 unknown
quantities vx, vy, vz and p. These equations describe the velocity and
pressure fields in each point (x,y,z) of a fluidic system (,  = const).

Boundary conditions (e.g. defined by the geometry of the device, the
pressure at inlet/outlet, fluidic interfaces, etc) determine the actual
flow patterns.
-> Analytical solutions can be found only in specific cases.

Navier-Stokes equations in Cartesian coordinates

V0 ,p0

p(r,t)

p1

v(r,t)
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Example: Steady (time independent) flow through a constriction (nozzle)

 Advective acceleration of the flow

 The inertial part of the NSE is given by L0

vx(1+x/L0)vx

Rough estimate of the inertial force density fi,
assuming that vx increases by V0 over L0.
V0 and L0 are characteristic scales of the system.

T. M. Squires and S. R. Quake: Microfluidics: 
Fluid physics at the nanoliter scale

= 0 

fi [ N m-3 ]

Exploring the non-linear term (v)v in the Navier-Stokes eqns

with

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

A pressure force in x-direction generates
velocity/gradient components in x,y,z directions.
This results in flow instabilities and turbulences !

Example: Inviscid flow (neglecting viscosity) in a
pressure field.

e.g. only pressure gradient in x-direction

Exploring the non-linear term (v)v in the Navier-Stokes eqns

Turbulences on marcoscale due to fluidic inertia

In microfluidics inertial forces are normally negligible with respect to viscous
forces (see below the discussions on Reynolds number and Stokes flow).
Examples of microfluidic systems where inertial fluidic properties are relevant
will be shown later (e.g. secondary Dean flow for mixing).
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(2.13)

The total rate of change of the i-th component tPi of the
momentum in the region  is given by the surface integral 
over the flow n·(vi)v da of the i-th component through (da n).

Navier-Stokes equations (General theoretical derivation) 

Momentum flux density tensor  (2.12)

P(,t) in a region  can vary by
momentum flow (convection) through
the surface  and by action of forces.

(2.11)

More details in Henrik Bruus “Theoretical Microfluidics” 

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

• Viscous forces on 

The viscous stress tensor ’ relates all possible combinations of surface force
components and surface orientations. The stress tensor  allows calculating stress
forces occurring on any arbitrary surface of a control volume.

(2.16)
(2.17)

i-th component of the friction force acting 
on a surface element (nj da)

Remark: In other literature the viscous stress tensor is often denoted  (    ). The indices ij also are
often inversed, i.e. the first index indicates the surface normal, and the second index the force direction.

( = const, no p)
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• Viscous forces on  (2.16)

(2.18b)

(2.20)

The shear stress tensor ’ is symmetric ’ij = ’ji
Shear forces appear as off-diagonal elements.

Compressible fluid

Incompressible fluid
(uniform viscosity  and     kvk = 0

Normal to the surface, may be included in  as diagonal elements

(2.26)

• Pressure forces on 

 is the dynamic viscosity due to shear stress.
 stands for internal friction due to compression/stretching.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

• Navier-Stokes equation for compressible Newtonian fluids
 = const,  = const, and (r,t)

(2.29)

• Navier-Stokes equation for incompressible Newtonian fluids
 = const,  = const

(2.30)

 is the dynamic viscosity due to shear stress.

 stands for internal friction due to compression/extension.

 Applying the Gauss theorem to the net rate of change tPi in  in eqn. (2.11)
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2.4  Solutions for simple flow problems

• The US$ 1 million problem: Navier-Stokes equations are a system of non-
linear coupled partial differential eqns. (v)v accounts for interesting
hydrodynamic phenomena, but…they are unsolved !

http://www.claymath.org/millennium-problems

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Analytical techniques (direct integration, eigenfunction
expansion etc.) may be used only for simple geometries,
otherwise numerical solutions.

Simplifications of the NSE may be possible in specific cases
(e.g. Stokes eqn at low Re number, Laplace eqn for irrotational
flow, boundary eqn).

Initial and boundary conditions for v and/or v, stress components,
and pressure have to be defined to determine the flow and
pressure fields for a given system.

No-slip boundary condition for a motionless wall

(3.1)

Approaches for solving the Navier-Stokes equations
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Taylor-Couette flow

Re < Recritical

Couette flow purely azimuthal and laminar
(bearing flow).
Application: Rheometers for measuring 

Re > Recritical

Flow becomes unstable and toroidal vortices
emerge (Taylor vortex flow).

Re >> Recritical

Flow has different turbulent patterns.

Viscous fluid confined in the gap between two rotating cylinders.
Good model system to study flow instabilities and transitions.

https://en.wikipedia.org/wiki/Taylor-Couette_flow

https://doi.org/10.1051/epjconf/201921302014

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Couette flow between two moving parallel plates  

Fluid between two infinite parallel plates. The top plate moves in x-direction with 
constant speed v0 , resulting in a linear flow velocity profile vx(z) in z-direction. 

- Navier-Stokes eqn (p = const)

- Translation invariance along x, y                                                        and

- using the no-slip boundary  conditions           vx(0) = 0  and   vx(h) = v0

- Solution: Linear velocity profile

Force required to move the plate (with surface A)

(3.13)

(3.15)

(3.16)

(Fig. 3.3)
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Liquid film flow on an inclined plane

Liquid film flowing down the plane has a half-parabolic velocity profile in steady-state. 
(e.g. a 100 m thick water film flows at a mean velocity of 1 cm/s)

- Navier-Stokes eqn

with  and 

 2nd order linear eqn

boundary  conditions vx(0) = 0  no-slip
zvx(h) = 0 no stress

- Half-parabola solution

(3.9)

(3.10)

(3.11)

(3.12)

(Fig. 3.2)

 see also the full parabolic profile for Poiseuille flow discussed in Chapter 3.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

2.5 Reynolds number and Stokes flow

for Re ≥ Recrit >> 1  turbulent flow regime

Flow regimes
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Transition from laminar to turbulent flow in a tube with increasing flow speed

https://www.youtube.com/watch?v=XOLl2KeDiOg

Different flow regimes

(Reproduction of Reynold’s original experiment)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

In microfluidics, the pressure p is
normalized by a characteristic
shear stress V0/L0. (2.36)

Dimensionless form of the Navier-Stokes equations

Navier-Stokes eqn

The general fluidic properties of a system can be evaluated by using 
characteristic scales determined by the boundary conditions: L0 , V0

Dimensionless (normalized) 
forms can be derived for all 
variables, for instance…
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Dimensionless form of the Navier-Stokes equations

Making the Navier-Stokes eqns dimensionless

(2.38)

(2.37)if tv = 0

(2.39)Reynolds number

Dimensionless form
of the NSE

(2.37)if tv  0

Strouhal number

St accounts for a characteristic time scale Tch, e.g. defined by oscillating
boundaries. Describes internal flow instabilities (vortex formation).

St = TchV0 / L0

ܴ݁
ݐܵ

V0
2/L0

V0/L0
2

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Human swimming  ̴ 104 - 106 

Fastest Fish  ̴ 106

Large ship ̴ 109

Onset of turbulent flow 
Flow in a pipe 2.3 × 103 to  5.0 × 104

Boundary layers up to 106

Microorganisms ̴ 10-6 - 10-3

Blood flow in brain ̴ 1 × 102

Blood flow in aorta ̴ 1 × 103

Re numbers are important for scaling of fluidic systems.

Re numbers may be defined in different ways, depending on the characteristic scales of the
specific system (e.g. width of a channel, length of a body, etc).

Some values for Reynolds numbers

Typical values for microfluidic devices:

water, 1 m/s - 1 cm/s, channel 1 - 100 m 
 Re range between O (10-6) to O (100)
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Streamlines of a flow over a sphere with
increasing flow speed (water flowing from left to
right,   19 mm). The inertial (v)v term
becomes increasingly important.

- Laminar flow for low Re < 10

- Vortex ring develops at Re  30

- Wake increases in size, becomes
comparable to sphere size at Re  130

- Wake remains attached for Re < 500

- Re > 500, vortices begin to be shed

S. Taneda, J. Phys. Soc. Japan,  Vol. 11(10), p. 1104-1108 (1956) 

Example: Flow past a sphere for rising Re numbers
Patterns for rising Re

Karman vortex street

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Inertial microfluidics

In microfluidics fluid inertia is normally
negligible (Stokes flow, Re ≪ 1).
Inertial microfluidics works in between
Stokes and turbulent regimes (inertia and
fluid viscosity are finite, 1 < Re < 100).

Vortices in expanding channels 
for cell trapping

Dean flow in curved channels 

Particle sorting by inertial lift forces

J. Zhang et al., Fundamentals and applications of inertial
microfluidics: a review, Lab Chip, 2016, 16, 10
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Stokes flow and Stokes equations

Stokes, G. G. 
On the Effect of the Internal Friction of Fluids on the 
Motion of Pendulums
Transactions of the Cambridge Philosophical Society, 
Vol. 9, pp. 8-93, 1851

He assumed that the flow is so slow that advective
acceleration of the fluid as it passes around the
sphere can be ignored, (v)v = 0.

The flow pattern is symmetrical front to back

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

For Re << 1 the non-linear term (v)v in the Navier-
Stokes equation can indeed be neglected.

Stokes equation

Stokes flow and Stokes equations

Stokes flow or “creeping flow” (very slow !)
Significant simplification. Relevant for microfluidics !
A linear eqn with analytical solutions is some cases.

(2.41)

Re < 0.1 is a good rule of thumb that the Stokes eqns are
a good approximation of a real flow problem.

Reynolds introduced “his” number only in 1883, i.e. more than 30 after Stokes’
intuitive approach.
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(2.41)

Expanded form + continuity eqn
(no external forces, tv = 0)

Taking the divergence (·_) of (2.41) results in
a Laplace equation for the pressure field p(r),
useful if boundary conditions are specified in
terms of pressure.

Taking the curl ( x _) of (2.41) results in a
simple equation for the vorticity ( =  x v),
useful if boundary conditions are specified in
terms of velocitiy.

(2.45)

(2.44)

Stokes flow and Stokes equations

May be simplified for specific cases :

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Properties of Stokes flow

- Laminar flow pattern

- Linear in pressure and velocity
(superposability of flow solutions).

- Instantaneity: No dependence on time
except through time-dependent
boundary conditions.

- Time reversibility of the flow. Flow
symmetry around (before/after) an
obstacle.

- Uniqueness  no flow instabilities.

- Minimum of dissipation of kinetic
energy. Tesla valve. In the Stokes flow regime no “valving” effect is

observed for inverted flow directions as forward and
reverse flow paths.

see also Taylor–Couette flow in two rotating cylinders: https://www.youtube.com/watch?v=p08_KlTKP50

Microfluidic artwork showing laminar flow patterns.
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tv  0 Transient form of the Stokes equation

The transient form of the Stokes equation 

Stokes eqn takes the form of a momentum
diffusion equation with the diffusion constant
 =  (kinematic viscosity [m2/s])

Example: p = 0 for t  0 (relaxing flow)  

L0

Estimation of the time scale 0 to establish/or to stop a
steady laminar flow upon application/release of an external
pressure difference p. Balance of unsteady inertial and
viscous force densities

 10 ms for a 100 m channel

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Unbounded Stokes flow around a sphere - Viscous drag force

(Fig. 3.12)

 Determine the viscous force Fd (Stokes drag force) acting on a rigid sphere (microbead, 
radius a) moving with velocity v0. 

(Fig. C.2)

Stokes (1851) derived the viscous drag force
Fd on a sphere by solving a simplified version
of the Navier-Stokes eqns analytically.
“Stokes paradox”: There is no non-trivial
solution for the Stokes equations around an
infinitely long cylinder.

Due to symmetry only the radial co-ordinate r and the
polar angle  enters in the calculation. The coordinate
system may be chosen with the bead at rest and liquid
flowing around.
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Unbounded Stokes flow around a sphere

Creeping flow (Re <<1): Acceleration can be ignored / inertial forces (v)v = 0.
The fluid is further slowed down due to viscous forces when passing the bead surface.

The flow pattern is symmetrical front to back

Velocity field v(r,) in terms of a power series in 
a/r. Boundary conditions: v(a) = 0 and v() = v0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Shear stress on the surface of 
a sphere (radius a)

Pressure field on the sphere 
(radius a, p* = ambient pressure)

(3.126)

Unbounded Stokes flow around a sphere


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Shear stress on a spherePressure field on the sphere 

(3.126)

 The drag force Fd can be derived from the stress tensor as integral over the 
surface force densities (including the normal p components).

‘Stokes Law’ for the viscous drag force on a sphere (3.127)

Corrections:  
Drag coefficient starts deviating for Re ≥ 0.2 

Drag on a sphere will be up to a factor 3 higher in the vicinity of a solid wall.

Unbounded Stokes flow around a sphere

accurate for Re < 0.2

J. Zhang et al., Fundamentals and applications of inertia
microfluidics: a review, Lab Chip, 2016, 16, 10

Fdrag = 6πaV0 (1 + 0.15Re0.687)

0.2 < Re < 500 -1000

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Life at small scale and low Re number

Propulsion mechanisms at high Re-numbers (humans,
fish, etc.) are based on inertial effects, e.g. fins.

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

At low Re-numbers any reciprocal motion (even if fast in
one direction and slow in the return direction) does not
result in forward motion due to the reversibility of the
Stokes flow.Rubber band powered toy that tries to 

paddle forward viscous corn syrup.

Example: A human swimming with v  1 mm/h in
honey (L = 2m,  = 10 Pas,  = 1.5 kg/l)
corresponds to Re = 10-4. A microorganism would
probably feel like this.

…but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !
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 Microorganism have developed other
propulsion mechanisms, such as flagella or
cilia, working as a flexible oar or as a
corkscrew.

Deforming the shape of the paddle breaks the
symmetry of the stroke, creating more drag on
the power stroke than on the recovery stroke.Life in moving fluids: the physical biology of flow 

by S. Vogel (1996)

Illustration of an Escherichia coli based on a SEM micrograph. These 
bacteria use flagella for propulsion. (A. Eckert and J. Oosthuizen)

PARAMECIUM (50 to 330 m, an abundant genus 
of unicellular ciliates) covered with hair-like cilia.

video

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

dragged marker

E.M. Purcell, Life at low Re number, America Journal of Physics, Vol. 45, p. 3-11 (1997)

Dusenbery, David B. (2009). Living at Micro Scale, Harvard University Press, Cambridge.

A protozoa (length 250 m, 100
m/s) drags water at a distances
up to 250 m (and more). Added
mass 200 g, i.e. 100 x cell mass
of 2 g
 As if a human would swim with
10 tons attached to the feet !

http://www.youtube.com/watch?v=gZk2bMaqs1E

A bacteria typically moves at 20-40 m/s. It
takes him about 0.1 Å and 0.3 s to stop.

Protozoa

For microorganism swimming in water becomes very difficult, although the
viscosity is very low ( = 1 mPas).
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Example 1: 2D hydrodynamic focusing

2D hydrodynamic focusing on a planar chip with two sheath flows.
Silicon/glass microchannels: height 40 m, width Dc=Df =200 m.
Total flow = 150 L/min, Qb/Qs  20  wfs  10 m.

http://www.nist.gov/

A.  Jahn, et al. , J. Am. Chem. Soc., 2004, 126 (9), 2674-2675

- Laminar flow conditions can be used to create well-defined fluidic interfaces,
e.g. to focus fluid streams hydrodynamically.

- Principle:  A central stream (wfs, Qs) is squeezed by a lateral sheath flow (2 x QB/2)
- Applications: Laminar mixers, cell cytometers, single molecule detection, etc.

Mass flow balance for Qs:

Width of focused steam:

channel  f

Qs
channel  c

QB/2

QB/2

Total flow balance in channel f:

Qf = QS + QB = vf Df h

2.6 Hydrodynamic focusing

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

- On-chip 3D focusing combining laminar sheath flow and inertial effects.
- Re number must be high enough to allow for circulating secondary flow (1 < Re < 100). 
- Simplifies fluidic design and control, but high flow speeds !

Dean flow

Inhomogeneous flow profile causes centrifugal
forces driving a circulating flow in slightly curved
channels (R >> w).

The magnitude of the centrifugal force density is
greatest in the center, where the primary flow is
fastest: fi  V0

2[1-(r/w)2]2/R

Stable solution with a pair of vortices occur for low
Dean numbers (< 950).

De  Re (w/2R)0.5

w is the of the tube diameter or channel width, R is the radius of 
curvature of the path of the channel.

vDean

vflow

Example 2: 3D hydrodynamic focusing using Dean flow

T. M. Squires et al, 2005, Rev. Mod. Phys., 77, 977-1026

(see also Chapter 4.2.5: “A multivortex mixer
based on inertial flow properties”)
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Example of a single-layer planar device (PDMS)

The secondary flow velocity field shows strong
Dean vortices.
 “Microfluidic drifting” resulting in stretching

of the sample flow acroos the channel width
(vertical focusing, red).

 Two lateral sheath flows are introduced for
horizontal focusing.

Re = 74 (!), De  43
High flow speed in the range of  m/s !

Cross-sectional profiles of the fluorescein dye concentration
in the focusing device. Inset: simulation of the secondary
flow velocity field shows Dean vortices in the 90° curve.

X. Mao et al., Lab Chip, 2007, 7, 1260-1262

X. Mao et al., Lab Chip, 2009, 9, 1583-1589
Channel w = 100 m, h = 75 m, L = 1cm, Rcurve = 250 m

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Focused beam   15 m
The 3D architecture of the sample flow
during the focusing process characterized by
confocal microscopy (fluorescein solution).

Inlet A: Cells or particles; Inlet B: vertical focusing
sheath flow; lnlets C and D: horizontal focusing
sheath flows. Inset 2 represent the Dean vortices.
Laser-induced fluorescent detection is shown.X. Mao et al., Lab Chip, 2007, 7, 1260-1262
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(a) Fluorescent and (b) bright-field top view of the particle flow ( 8 m).  

3D focusing for on-chip cytometry

Side view of the particle flow with focusing height 12 m: Particle velocity 3.6 m s-1, 1700 particles/s-1

X. Mao et al., Lab Chip, 2007, 7, 1260-1262

Video (see SI in the article)
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